Skip to content

Alzheimer’s Disease: Green Tea Extract Found To Interfere With The Formation Of Amyloid Plaques

March 8, 2013

Alzheimer’s Disease: Green Tea Extract Found To Interfere With The Formation Of Amyloid Plaques
Main Category: Alzheimer’s / Dementia
Also Included In: Neurology / Neuroscience; Nutrition / Diet
Article Date: 08 Mar 2013 – 0:00 PST

Alzheimer’s Disease: Green Tea Extract Found To Interfere With The Formation Of Amyloid Plaques
Main Category: Alzheimer’s / Dementia
Also Included In: Neurology / Neuroscience; Nutrition / Diet
Article Date: 08 Mar 2013 – 0:00 PST

Alzheimer’s Disease: Green Tea Extract Found To Interfere With The Formation Of Amyloid Plaques

Researchers at the University of Michigan have found a new potential benefit of a molecule in green tea: preventing the misfolding of specific proteins in the brain.

The aggregation of these proteins, called metal-associated amyloids, is associated with Alzheimer’s disease and other neurodegenerative conditions.

A paper published recently in the Proceedings of the National Academy of Sciences explained how U-M Life Sciences Institute faculty member Mi Hee Lim and an interdisciplinary team of researchers used green tea extract to control the generation of metal-associated amyloid-β aggregates associated with Alzheimer’s disease in the lab.

The specific molecule in green tea, (-)-epigallocatechin-3-gallate, also known as EGCG, prevented aggregate formation and broke down existing aggregate structures in the proteins that contained metals – specifically copper, iron and zinc.

“A lot of people are very excited about this molecule,” said Lim, noting that the EGCG and other flavonoids in natural products have long been established as powerful antioxidants. “We used a multidisciplinary approach. This is the first example of structure-centric, multidisciplinary investigations by three principal investigators with three different areas of expertise.”

The research team included chemists, biochemists and biophysicists.

While many researchers are investigating small molecules and metal-associated amyloids, most are looking from a limited perspective, said Lim, assistant professor of chemistry and research assistant professor at the Life Sciences Institute, where her lab is located and her research is conducted.

“But we believe you have to have a lot of approaches working together, because the brain is very complex,” she said.

The PNAS paper was a starting point, Lim said, and her team’s next step is to “tweak” the molecule and then test its ability to interfere with plaque formation in fruit flies.

“We want to modify them for the brain, specifically to interfere with the plaques associated with Alzheimer’s,” she said.

Lim plans to collaborate with Bing Ye, a neurobiologist in the LSI. Together, the researchers will test the new molecule’s power to inhibit potential toxicity of aggregates containing proteins and metals in fruit flies.

Article adapted by Medical News Today from original press release.
http://www.medicalnewstoday.com.

Researchers at the University of Michigan have found a new potential benefit of a molecule in green tea: preventing the misfolding of specific proteins in the brain.

The aggregation of these proteins, called metal-associated amyloids, is associated with Alzheimer’s disease and other neurodegenerative conditions.

A paper published recently in the Proceedings of the National Academy of Sciences explained how U-M Life Sciences Institute faculty member Mi Hee Lim and an interdisciplinary team of researchers used green tea extract to control the generation of metal-associated amyloid-β aggregates associated with Alzheimer’s disease in the lab.

The specific molecule in green tea, (-)-epigallocatechin-3-gallate, also known as EGCG, prevented aggregate formation and broke down existing aggregate structures in the proteins that contained metals – specifically copper, iron and zinc.

“A lot of people are very excited about this molecule,” said Lim, noting that the EGCG and other flavonoids in natural products have long been established as powerful antioxidants. “We used a multidisciplinary approach. This is the first example of structure-centric, multidisciplinary investigations by three principal investigators with three different areas of expertise.”

The research team included chemists, biochemists and biophysicists.

While many researchers are investigating small molecules and metal-associated amyloids, most are looking from a limited perspective, said Lim, assistant professor of chemistry and research assistant professor at the Life Sciences Institute, where her lab is located and her research is conducted.

“But we believe you have to have a lot of approaches working together, because the brain is very complex,” she said.

The PNAS paper was a starting point, Lim said, and her team’s next step is to “tweak” the molecule and then test its ability to interfere with plaque formation in fruit flies.

“We want to modify them for the brain, specifically to interfere with the plaques associated with Alzheimer’s,” she said.

Lim plans to collaborate with Bing Ye, a neurobiologist in the LSI. Together, the researchers will test the new molecule’s power to inhibit potential toxicity of aggregates containing proteins and metals in fruit flies.

Additional
References
Citations

Article adapted by Medical News Today from original press release. Click ‘references’ tab above for source.
Visit our alzheimer’s / dementia section for the latest news on this subject.

Advertisements
No comments yet

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: